DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 25

[Docket No. FAA-2013-0857; Notice No. 25-13-08-SC]

Special Conditions: Learjet Inc., Model LJ–200–1A10 Airplane; Crashworthiness, Emergency Landing Conditions

AGENCY: Federal Aviation Administration (FAA), DOT. **ACTION:** Notice of proposed special conditions.

SUMMARY: This action proposes special conditions for the Learjet Model LJ-200–1A10 airplane. This airplane will have novel or unusual design features when compared to the state of technology envisioned in the airworthiness standards for transport category airplanes. These features are associated with a hybrid construction that uses both composite and metallic materials in the structure for which the crashworthiness responses for occupant safety may not be equivalent to current all-metallic airplanes. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for the crashworthiness of this design feature. These proposed special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards. DATES: Send your comments on or before December 16, 2013.

ADDRESSES: Send comments identified by docket number FAA–2013–0857 using any of the following methods:

• Federal eRegulations Portal: Go to http://www.regulations.gov/ and follow the online instructions for sending your comments electronically.

• *Mail:* Send comments to Docket Operations, M–30, U.S. Department of Transportation (DOT), 1200 New Jersey Avenue SE., Room W12–140, West Building Ground Floor, Washington, DC 20590–0001.

• Hand Delivery or Courier: Take comments to Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington, DC, between 8 a.m. and 5 p.m., Monday through Friday, except federal holidays.

• *Fax:* Fax comments to Docket Operations at 202–493–2251.

Privacy: The FAA will post all comments it receives, without change, to *http://www.regulations.gov/,* including any personal information the

commenter provides. Using the search function of the docket Web site, anyone can find and read the electronic form of all comments received into any FAA docket, including the name of the individual sending the comment (or signing the comment for an association, business, labor union, etc.). DOT's complete Privacy Act Statement can be found in the **Federal Register** published on April 11, 2000 (65 FR 19477–19478), as well as at *http://DocketsInfo.dot* .gov/.

Docket: Background documents or comments received may be read at *http://www.regulations.gov/* at any time. Follow the online instructions for accessing the docket or go to the Docket Operations in Room W12–140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington, DC, between 9 a.m. and 5 p.m., Monday through Friday, except federal holidays.

FOR FURTHER INFORMATION CONTACT: Mark Freisthler, FAA, Airframe/Cabin Safety, ANM–115, Transport Airplane Directorate, Aircraft Certification Service, 1601 Lind Avenue SW., Renton, Washington 98057–3356; telephone (425) 227–1119; facsimile (425) 227–1320.

SUPPLEMENTARY INFORMATION:

Comments Invited

We invite interested people to take part in this rulemaking by sending written comments, data, or views. The most helpful comments reference a specific portion of the special conditions, explain the reason for any recommended change, and include supporting data.

We will consider all comments we receive on or before the closing date for comments. We may change these special conditions based on the comments we receive.

Background

On February 9, 2009, Learjet Inc. applied for a type certificate for their new Model LJ–200–1A10 airplane (hereafter referred to as the "Model LJ– 200"). The Model LJ–200 is a business class airplane powered by two highbypass turbine engines with an estimated maximum takeoff weight of 35,550 pounds and an interior configuration for up to 10 passengers.

The current design includes a skinstringer fuselage and aft fuselage configuration. The pressure fuselage will consist of monolithic carbon fiber reinforced plastic (CFRP) skin, with CFRP and metallic frames above floor level, and CFRP longerons and stringers. All substructure will be mechanically fastened to the skin. Fasteners for

stringers aligned along the length of the co-cured splice will provide fail-safe capability for the splice. Cabin entry door frames, over-wing exit door frames, and frames below floor level will be metallic. Attachment of pressure bulkheads, windshield frame, and splicing concepts will be adjusted for any skin thickness variation that occurs. The wing consists of resin transfer infusion (RTI) skins with composite spars and metallic ribs. The empennage consists of composite sandwich skins with metallic spars and ribs. The airframe has a sandwich construction for the nose and empennage structures.

There are no existing regulations that adequately address the potential difference between metallic fabricated airplanes and composite fabricated airplanes with regards to impact response characteristics for what are considered survivable crash conditions. The CFRP fuselage constitutes a novel and unusual design feature for a transport category airplane. These special conditions are necessary to ensure a level of safety equivalent to that provided by Title 14, Code of Federal Regulations (14 CFR) part 25.

Type Certification Basis

Under the provisions of 14 CFR 21.17, Learjet Inc. must show that the Model LJ–200 meets the applicable provisions of part 25, as amended by Amendments 25–1 through 25–127 thereto, and 14 CFR part 26, as amended by Amendment 26–1 through 26–2 thereto.

If the Administrator finds that the applicable airworthiness regulations (i.e., 14 CFR part 25) do not contain adequate or appropriate safety standards for the Model LJ–200 because of a novel or unusual design feature, special conditions are prescribed under the provisions of § 21.16.

Special conditions are initially applicable to the model for which they are issued. Should the type certificate for that model be amended later to include any other model that incorporates the same or similar novel or unusual design feature, the special conditions would also apply to the other model under § 21.101.

In addition to the applicable airworthiness regulations and special conditions, the Model LJ–200 must comply with the fuel vent and exhaust emission requirements of 14 CFR part 34 and the noise certification requirements of 14 CFR part 36, and the FAA must issue a finding of regulatory adequacy under § 611 of Public Law 92– 574, the "Noise Control Act of 1972." The FAA issues special conditions, as

The FAA issues special conditions, as defined in 14 CFR 11.19, in accordance with § 11.38, and they become part of the type-certification basis under § 21.17(a)(2).

Novel or Unusual Design Features

The Model LJ–200 will incorporate the following novel or unusual design features: Hybrid construction using both composite and metallic materials in the structure for which the crashworthiness responses for occupant safety may not be equivalent to current all-metallic airplanes.

Discussion

The Model LJ-200 fuselage is fabricated using carbon fiber reinforced plastic (CFRP) skins with aluminum ribs and stringers. This hybrid construction may behave differently from similar, fully-metallic structure due to differences in material ductility, stiffness, failure modes, and energy absorption characteristics. Therefore, the impact response characteristics of the Model LJ-200 must be evaluated to ensure the survivable crashworthiness characteristics are not significantly different than those of a similarly sized airplane fabricated from traditionally used metallic materials.

The FAA and industry have been working together for many years to understand how transport airplane occupant safety can be improved for what are considered survivable accidents. This work has involved examining airplane accidents, conducting tests to simulate crash conditions, and developing analytical modeling of a range of crash conditions, all with the purpose of providing further insight into the factors that can influence occupant safety. Results of this on-going effort have enabled specific changes to regulatory standards and design practices to improve occupant safety. This evolution is reflected in changes to the part 25 emergency landing condition regulations. For example, airplane emergency load factors in § 25.561, General, have been increased, and passenger seat dynamic load conditions have been added (§ 25.562, Emergency landing dynamic conditions).

The seat dynamic load conditions were added to the regulations based on FAA and industry tests and a review of accidents. They reflect horizontal and vertical accelerations/time environment generated by previously certificated airplane designs given conditions that were survivable. These tests also demonstrated that the performance of the airframe was acceptable in a dynamic impact event. In the evolution of the regulations, there is at present no specific dynamic regulatory requirement for airplane-level crashworthiness. However, the FAA requires an assessment of each new model airplane to ensure that the airplane will not significantly depart from typical dynamic characteristics found in previously certificated designs.

The nature of the assessment is largely dependent on the similarities and differences between the new type design and previously certificated airplanes. Such an assessment ensures that the level of safety of the new composite designs corresponds to the level of safety achieved with similar metallic designs around which the existing regulations were written. If significant trends in industry warrant change to the existing regulations, the FAA and industry rulemaking process may be used to develop an appropriate dynamic regulatory requirement for airplane level crashworthiness.

The FAA and industry have collected a significant amount of experimental data as well as data from crashes of transport category airplanes that demonstrate a high occupant survival rate at vertical descent velocities up to 30 ft/sec (on a single-aisle airplane). Based on this information, the FAA finds it appropriate and necessary for an assessment of the Model LJ–200 to span a range of airplane vertical descent velocities (up to 30 ft/sec, or that appropriate for a comparable size airplane).

The FAA expects the Model LJ-200 to exhibit similar crashworthiness capabilities under foreseeable survivable impact events as achieved by previously certificated transport category airplanes of similar size and configuration. In order to make this assessment, criteria need to be established by which the similarities and differences between new type designs and previously certificated airplanes may be analytically evaluated. Based on the FAA's evaluation of the intent of existing regulations, the following areas need to be evaluated to demonstrate comparable behavior of the Model LJ-200 design to currently certificated transport category airplanes:

• Retention of items of mass. It must be shown that the occupants, i.e., passengers, flight attendants, and flight crew, will be protected during the impact event from release of seats, overhead bins, and other items of mass due to the impact loads and resultant structural deformation of the supporting airframe and floor structures.

• Maintenance of occupant emergency egress paths. The airframe must not deform such that rapid evacuation of occupants is impeded. • Maintenance of acceptable acceleration and loads experienced by the occupants.

• Maintenance of a survivable volume. All areas of the airplane occupied for takeoff and landing must be shown to provide a survivable volume during and after the impact event.

Applicability

As discussed above, these special conditions are applicable to the Learjet Model LJ–200–1A10. Should Learjet Inc. apply at a later date for a change to the type certificate to include another model incorporating the same novel or unusual design feature, the special conditions would apply to that model as well.

Conclusion

This action affects only certain novel or unusual design features on one model of airplanes. It is not a rule of general applicability.

List of Subjects in 14 CFR Part 25

Aircraft, Aviation safety, Reporting and recordkeeping requirements. The authority citation for these

special conditions is as follows:

Authority: 49 U.S.C. 106(g), 40113, 44701, 44702, 44704.

The Proposed Special Conditions

Accordingly, the Federal Aviation Administration (FAA) proposes the following special conditions as part of the type certification basis for Learjet Model LJ–200–1A10 airplanes.

In order to demonstrate an equivalent level of occupant safety and survivability to that provided by previously certificated transport category airplanes of similar size and configuration under foreseeable survivable impact events, Learjet must demonstrate that the Model LJ–200– 1A10 meets the following criteria for a range of airplane vertical descent velocities up to 30 ft/sec:

1. Retention of items of mass. The occupants, i.e., passengers, flight attendants, and flightcrew, must be protected during the impact event from release of seats, overhead bins, and other items of mass due to the impact loads and resultant structural deformation of the supporting airframe and floor structures. The applicant must show that loads due to the impact event and resultant structural deformation of the supporting airframe and floor structure at the interface of the airplane structure to seats, overhead bins, and other items of mass are comparable to those of previously certificated transport category airplanes of similar size for the

range of descent velocities stated above. The attachments of these items need not be designed for static emergency landing loads in excess of those defined in § 25.561 if impact response characteristics of the Model LJ–200– 1A10 yield load factors at the attach points comparable with those expected for a previously certificated transport category airplane of similar size.

2. Maintenance of acceptable acceleration and loads experienced by the occupants. The applicant must show that the vertical acceleration levels experienced at the seat/floor interface and loads experienced by the occupants during the impact event are consistent with those found in § 25.562(b) or with the levels expected for a previously certificated comparable transport category airplane of similar size.

3. Maintenance of a survivable volume. The applicant must show that all areas of the airplane occupied for takeoff and landing provide a survivable volume comparable to that of previously certificated transport category airplanes of similar size during and after the impact event. This means that structural deformation will not result in infringement of the occupants' normal living space significantly affecting their survivability or egress.

4. Maintenance of occupant emergency egress paths. The applicant must show that the airframe deformation after the vertical impact event does not impede the rapid evacuation of occupants comparable to previously certified transport category airplanes of similar size.

Issued in Renton, Washington, on September 19, 2013.

Ross Landes,

Acting Manager, Transport Airplane Directorate, Aircraft Certification Service. [FR Doc. 2013–25841 Filed 10–30–13; 8:45 am] BILLING CODE 4910–13–P

DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

14 CFR Part 71

[Docket No. FAA-2013-0017; Airspace Docket No. 13-AAL-1]

Proposed Establishment of Class E Airspace; Central, AK

AGENCY: Federal Aviation Administration (FAA), DOT. **ACTION:** Notice of proposed rulemaking (NPRM).

SUMMARY: This action proposes to establish Class E airspace at Central Airport, Central, AK. Controlled airspace is necessary to accommodate the new Area Navigation (RNAV) Global Positioning System (GPS) standard instrument approach procedures at the airport. The FAA is proposing this action to enhance the safety and management of aircraft operations at Central Airport, Central, AK. DATES: Comments must be received on

or before December 16, 2013.

ADDRESSES: Send comments on this proposal to the U.S. Department of Transportation, Docket Operations, M– 30, West Building Ground Floor, Room W12–140, 1200 New Jersey Avenue SE., Washington, DC 20590; telephone (202) 366–9826. You must identify FAA Docket No. FAA–2013–0017; Airspace Docket No. 13–AAL–1, at the beginning of your comments. You may also submit comments through the Internet at http://www.regulations.gov.

FOR FURTHER INFORMATION CONTACT:

Richard Roberts, Federal Aviation Administration, Operations Support Group, Western Service Center, 1601 Lind Avenue SW., Renton, WA 98057; telephone (425) 203–4517.

SUPPLEMENTARY INFORMATION:

Comments Invited

Interested parties are invited to participate in this proposed rulemaking by submitting such written data, views, or arguments, as they may desire. Comments that provide the factual basis supporting the views and suggestions presented are particularly helpful in developing reasoned regulatory decisions on the proposal. Comments are specifically invited on the overall regulatory, aeronautical, economic, environmental, and energy-related aspects of the proposal.

Communications should identify both docket numbers (FAA Docket No. FAA– 2013–0017 and Airspace Docket No. 13– AAL–1) and be submitted in triplicate to the Docket Management System (see **ADDRESSES** section for address and phone number). You may also submit comments through the Internet at http://www.regulations.gov.

Commenters wishing the FAA to acknowledge receipt of their comments on this action must submit with those comments a self-addressed stamped postcard on which the following statement is made: "Comments to FAA Docket No. FAA–2013–0017 and Airspace Docket No. 13–AAL–1". The postcard will be date/time stamped and returned to the commenter.

All communications received on or before the specified closing date for comments will be considered before taking action on the proposed rule. The proposal contained in this action may be changed in light of comments received. All comments submitted will be available for examination in the public docket both before and after the closing date for comments. A report summarizing each substantive public contact with FAA personnel concerned with this rulemaking will be filed in the docket.

Availability of NPRM's

An electronic copy of this document may be downloaded through the Internet at *http://www.regulations.gov.* Recently published rulemaking documents can also be accessed through the FAA's Web page at *http:// www.faa.gov/airports_airtraffic/ air_traffic/publications/ airspace_amendments/.*

You may review the public docket containing the proposal, any comments received, and any final disposition in person in the Dockets Office (see the **ADDRESSES** section for the address and phone number) between 9:00 a.m. and 5:00 p.m., Monday through Friday, except federal holidays. An informal docket may also be examined during normal business hours at the Northwest Mountain Regional Office of the Federal Aviation Administration, Air Traffic Organization, Western Service Center, Operations Support Group, 1601 Lind Avenue SW., Renton, WA 98057.

Persons interested in being placed on a mailing list for future NPRM's should contact the FAA's Office of Rulemaking, (202) 267–9677, for a copy of Advisory Circular No. 11–2A, Notice of Proposed Rulemaking Distribution System, which describes the application procedure.

The Proposal

The FAA is proposing an amendment to Title 14 Code of Federal Regulations (14 CFR) Part 71 by establishing Class E airspace extending upward from 700 feet above the surface at Central, AK. Airspace is needed to accommodate the new RNAV (GPS) standard instrument approaches and departures developed for the airport. Class E airspace extending upward from 700 feet above the surface would be established within an area 17 miles east and west of the airport and 4 miles north and 9 miles south of the airport. This action would enhance the safety and management of aircraft operations at the airport.

Class E airspace designations are published in paragraph 6005, of FAA Order 7400.9X, dated August 7, 2013, and effective September 15, 2013, which is incorporated by reference in 14 CFR 71.1. The Class E airspace designation listed in this document will be published subsequently in this Order.